
Algorithmic and advanced
Programming in Python

1

Eric Benhamou eric.benhamou@dauphine.eu
Chien-Chung.Huang chien-chung.huang@ens.fr
Sofía Vázquez sofia.Vazquez@dauphine.eu

Master class 8

Algorithmic and advanced Programming in Python

Outline
1. What is a tree?
2. Binary trees
3. Order traversal

2

Algorithmic and advanced Programming in Python

Reminder of the objective of this course
• People often learn about data structures out of context
• But in this course you will learn foundational concepts by building a

real application with python and Flask

• To learn the ins and outs of the essential data structure, experiencing in
practice has proved to be a much more powerful way to learn data
structures

3

Algorithmic and advanced Programming in Python

Reminder of previous session
• In Master class 7, we discuss about hashing
• Question: can you summarize what hashing is and how it works?

4

Algorithmic and advanced Programming in Python

• A 𝑡𝑡𝑟𝑟𝑒𝑒𝑒𝑒 is a data structure similar to a linked list but instead of each node
pointing simply to the next node in a linear fashion, each node points to a
number of nodes.

• Tree is an example of a non-linear data structure. A 𝑡𝑡𝑟𝑟𝑒𝑒𝑒𝑒 structure is a way
of representing the hierarchical nature of a structure in a graphical form.

• Question: is the order important? can you cite some linear data structures?

What is a Tree?

5

Algorithmic and advanced Programming in Python

Is the order important?
• In trees ADT (Abstract Data Type), the order of the elements is not

important. If we need ordering information, linear data structures like
linked lists, stacks, queues, etc. can be used.

6

Algorithmic and advanced Programming in Python

Glossary

• The 𝑟𝑟𝑜𝑜𝑜𝑜𝑡𝑡 of a tree is the node with no parents. There can be at most
one root node in a tree (node 𝐴𝐴 in the above example).

• An 𝑒𝑒𝑑𝑑𝑔𝑔𝑒𝑒 refers to the link from parent to child (all links in the figure).

7

Root node

Algorithmic and advanced Programming in Python

Glossary

• A node with no children is called 𝑙𝑙𝑒𝑒𝑎𝑎𝑓𝑓 node.
• Question: can you cite all of them?

Algorithmic and advanced Programming in Python

Glossary

• A node with no children is called 𝑙𝑙𝑒𝑒𝑎𝑎𝑓𝑓 node.
• Question: can you cite all of them?
• (𝐸𝐸, 𝐽𝐽, 𝐾𝐾, 𝐻𝐻 and 𝐼𝐼).

Algorithmic and advanced Programming in Python

Glossary

• A node with no children is called 𝑙𝑙𝑒𝑒𝑎𝑎𝑓𝑓 node Children of same parent
are called 𝑠𝑠𝑖𝑖𝑏𝑏𝑙𝑙𝑖𝑖𝑛𝑛𝑔𝑔𝑠𝑠

• Question: can you cite some?

Algorithmic and advanced Programming in Python

Glossary

• A node with no children is called 𝑙𝑙𝑒𝑒𝑎𝑎𝑓𝑓 node Children of same parent
are called 𝑠𝑠𝑖𝑖𝑏𝑏𝑙𝑙𝑖𝑖𝑛𝑛𝑔𝑔𝑠𝑠

• Question: can you cite some?
• (𝐵𝐵, 𝐶𝐶, 𝐷𝐷 are siblings of 𝐴𝐴, and 𝐸𝐸, 𝐹𝐹 are the siblings of 𝐵𝐵).

Algorithmic and advanced Programming in Python

Glossary

• A node 𝑝𝑝 is an 𝑎𝑎𝑛𝑛𝑐𝑐𝑒𝑒𝑠𝑠𝑡𝑡𝑜𝑜𝑟𝑟 of node 𝑞𝑞 if there exists a path from 𝑟𝑟𝑜𝑜𝑜𝑜𝑡𝑡 to
𝑞𝑞 and 𝑝𝑝 appears on the path. The node 𝑞𝑞 is called a 𝑑𝑑𝑒𝑒𝑠𝑠𝑐𝑐𝑒𝑒𝑛𝑛𝑑𝑑𝑎𝑎𝑛𝑛𝑡𝑡 of 𝑝𝑝.
Question: what are the ancestors of K?

Algorithmic and advanced Programming in Python

Glossary

• A node 𝑝𝑝 is an 𝑎𝑎𝑛𝑛𝑐𝑐𝑒𝑒𝑠𝑠𝑡𝑡𝑜𝑜𝑟𝑟 of node 𝑞𝑞 if there exists a path from 𝑟𝑟𝑜𝑜𝑜𝑜𝑡𝑡 to
𝑞𝑞 and 𝑝𝑝 appears on the path. The node 𝑞𝑞 is called a 𝑑𝑑𝑒𝑒𝑠𝑠𝑐𝑐𝑒𝑒𝑛𝑛𝑑𝑑𝑎𝑎𝑛𝑛𝑡𝑡 of 𝑝𝑝.
Question: what are the ancestors of K?

• 𝐴𝐴, 𝐶𝐶 and 𝐺𝐺 are the ancestors of 𝐾𝐾.

Algorithmic and advanced Programming in Python

Glossary

• The set of all nodes at a given depth is called the 𝑙𝑙𝑒𝑒𝑣𝑣𝑒𝑒𝑙𝑙 of the tree (𝐵𝐵,
𝐶𝐶 and 𝐷𝐷 are the same level). The root node is at level zero.

• The 𝑑𝑑𝑒𝑒𝑝𝑝𝑡𝑡ℎ of a node is the length of the path from the root to the node

Algorithmic and advanced Programming in Python

Glossary

• The set of all nodes at a given depth is called the 𝑙𝑙𝑒𝑒𝑣𝑣𝑒𝑒𝑙𝑙 of the tree (𝐵𝐵,
𝐶𝐶 and 𝐷𝐷 are the same level). The root node is at level zero.

• The 𝑑𝑑𝑒𝑒𝑝𝑝𝑡𝑡ℎ of a node is the length of the path from the root to the node
• Question: what is the depth of G?

Algorithmic and advanced Programming in Python

Glossary

• The set of all nodes at a given depth is called the 𝑙𝑙𝑒𝑒𝑣𝑣𝑒𝑒𝑙𝑙 of the tree (𝐵𝐵,
𝐶𝐶 and 𝐷𝐷 are the same level). The root node is at level zero.

• The 𝑑𝑑𝑒𝑒𝑝𝑝𝑡𝑡ℎ of a node is the length of the path from the root to the node
• Question: what is the depth of G?
• The depth of 𝐺𝐺 is 2, 𝐴𝐴 − 𝐶𝐶 − 𝐺𝐺

Algorithmic and advanced Programming in Python

Glossary

• The ℎ𝑒𝑒𝑖𝑖𝑔𝑔ℎ𝑡𝑡 of a node is the length of the path from that node to the
deepest node. The height of a tree is the length of the path from the
root to the deepest node in the tree. A (rooted) tree with only one node
(the root) has a height of zero.

• Question: what is the height of 𝐵𝐵 ?

Algorithmic and advanced Programming in Python

Glossary

• The ℎ𝑒𝑒𝑖𝑖𝑔𝑔ℎ𝑡𝑡 of a node is the length of the path from that node to the
deepest node. The height of a tree is the length of the path from the
root to the deepest node in the tree. A (rooted) tree with only one node
(the root) has a height of zero.

• Question: what is the height of 𝐵𝐵 ?
• The height of 𝐵𝐵 is 2 (𝐵𝐵 − 𝐹𝐹 − 𝐽𝐽).

Algorithmic and advanced Programming in Python

Glossary

• 𝐻𝐻𝑒𝑒𝑖𝑖𝑔𝑔ℎ𝑡𝑡 𝑜𝑜𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑟𝑟𝑒𝑒𝑒𝑒 is the maximum height among all the nodes in the
tree and 𝑑𝑑𝑒𝑒𝑝𝑝𝑡𝑡ℎ 𝑜𝑜𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑟𝑟𝑒𝑒𝑒𝑒 is the maximum depth among all the
nodes in the tree.

• For a given tree, depth and height returns the same value. But for
individual nodes we may get different results.

• Question: give height and depth of B?

Algorithmic and advanced Programming in Python

Glossary

• 𝐻𝐻𝑒𝑒𝑖𝑖𝑔𝑔ℎ𝑡𝑡 𝑜𝑜𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑟𝑟𝑒𝑒𝑒𝑒 is the maximum height among all the nodes in the
tree and 𝑑𝑑𝑒𝑒𝑝𝑝𝑡𝑡ℎ 𝑜𝑜𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑟𝑟𝑒𝑒𝑒𝑒 is the maximum depth among all the
nodes in the tree.

• For a given tree, depth and height returns the same value. But for
individual nodes we may get different results.

• Question: give height and depth of B? height of B 2, depth 1

Algorithmic and advanced Programming in Python

Glossary

• Question: what is the relationship between height and depth of a node
and the depth/height of a tree?

Algorithmic and advanced Programming in Python

Glossary

• Question: what is the relationship between height and depth of a node
and the depth/height of a tree?

• height + depth of a node <= height/depth of the tree

Algorithmic and advanced Programming in Python

Glossary

• The size of a node is the number of descendants it has including itself
(the size of the subtree 𝐶𝐶 is 3).

Algorithmic and advanced Programming in Python

Glossary
• If every node in a tree has only one child (except leaf nodes) then we

call such trees 𝑠𝑠𝑘𝑘𝑒𝑒𝑤𝑤 𝑡𝑡𝑟𝑟𝑒𝑒𝑒𝑒𝑠𝑠. If every node has only left child then we
call them 𝑙𝑙𝑒𝑒𝑓𝑓𝑡𝑡 𝑠𝑠𝑘𝑘𝑒𝑒𝑤𝑤 𝑡𝑡𝑟𝑟𝑒𝑒𝑒𝑒𝑠𝑠. Similarly, if every node has only right
child then we call them 𝑟𝑟𝑖𝑖𝑔𝑔ℎ𝑡𝑡 𝑠𝑠𝑘𝑘𝑒𝑒𝑤𝑤 𝑡𝑡𝑟𝑟𝑒𝑒𝑒𝑒𝑠𝑠.

24

Algorithmic and advanced Programming in Python

Binary trees
• A tree is called 𝑏𝑏𝑖𝑖𝑛𝑛𝑎𝑎𝑟𝑟𝑦𝑦 𝑡𝑡𝑟𝑟𝑒𝑒𝑒𝑒 if each node has zero child, one child or

two children. Empty tree is also a valid binary tree. We can visualize a
binary tree as consisting of a root and two disjoint binary trees, called
the left and right subtrees of the root.

25

Algorithmic and advanced Programming in Python

Generic binary trees

26

• A binary is balanced if it has symmetric right and left subtree

Algorithmic and advanced Programming in Python

Type of Binary trees
• Strict Binary Tree: A binary tree is called 𝑠𝑠𝑡𝑡𝑟𝑟𝑖𝑖𝑐𝑐𝑡𝑡 𝑏𝑏𝑖𝑖𝑛𝑛𝑎𝑎𝑟𝑟𝑦𝑦 𝑡𝑡𝑟𝑟𝑒𝑒𝑒𝑒 if each

node has exactly two children or no children.

• Full Binary Tree: A binary tree is called 𝑓𝑓𝑢𝑢𝑙𝑙𝑙𝑙 𝑏𝑏𝑖𝑖𝑛𝑛𝑎𝑎𝑟𝑟𝑦𝑦 𝑡𝑡𝑟𝑟𝑒𝑒𝑒𝑒 if each node
has exactly two children and all leaf nodes are at the same level.

• Question: can you draw a full binary tree of depth 3?

27

Algorithmic and advanced Programming in Python

Full Binary Tree
• Question: can you draw a full binary tree of depth 3?
• Yes, here we go!

28

Algorithmic and advanced Programming in Python

Complete binary tree
• Before defining the 𝑐𝑐𝑜𝑜𝑚𝑚𝑝𝑝𝑙𝑙𝑒𝑒𝑡𝑡𝑒𝑒 𝑏𝑏𝑖𝑖𝑛𝑛𝑎𝑎𝑟𝑟𝑦𝑦 𝑡𝑡𝑟𝑟𝑒𝑒𝑒𝑒, let us assume that the

height of the binary tree is ℎ. In complete binary trees, if we give
numbering for the nodes by starting at the root (let us say the root
node has 1) then we get a complete sequence from 1 to the number of
nodes in the tree. While traversing we should give numbering for nil
pointers also. A binary tree is called 𝑐𝑐𝑜𝑜𝑚𝑚𝑝𝑝𝑙𝑙𝑒𝑒𝑡𝑡𝑒𝑒 𝑏𝑏𝑖𝑖𝑛𝑛𝑎𝑎𝑟𝑟𝑦𝑦 𝑡𝑡𝑟𝑟𝑒𝑒𝑒𝑒 if all leaf
nodes are at depth ℎ or ℎ − 1 and also without any missing number in
the sequence.

29

Algorithmic and advanced Programming in Python

Please complete?

30

Algorithmic and advanced Programming in Python

Please complete?

31

Algorithmic and advanced Programming in Python

Properties of binary trees
• For the following properties, let us assume that the height of the tree is

ℎ. Also, assume that root node is at height zero.

32

Algorithmic and advanced Programming in Python

Properties
• It is easy to get the number of nodes in a full binary tree of depth n
• Question: what is it?

33

Algorithmic and advanced Programming in Python

Properties
• It is easy to get the number of nodes in a full binary tree of depth n
• Question: what is it?
• 20 + 21 + 22 + … + 2n = 2n+1 − 1

34

Algorithmic and advanced Programming in Python

Properties
• From the diagram we can infer the following properties:

• The number of nodes in a full binary tree is 2h+1 – 1
• The number of nodes in a complete binary tree is between 2h (minimum) and

2h+1 – 1 (maximum).
• The number of leaf nodes in a full binary tree is 2h

35

Algorithmic and advanced Programming in Python

Structure of Binary Trees
• Now let us define structure of the binary tree. For simplicity, assume

that the data of the nodes are integers. One way to represent a node
(which contains data) is to have two links which point to left and right
children along with data fields as shown below:

36

Algorithmic and advanced Programming in Python

Structure

• Note: In trees, the default flow is from parent to children and it is not mandatory to show
directed branches. For our discussion, we assume both the representations shown below
are the same.

37

Algorithmic and advanced Programming in Python

Operations on Binary Trees
• Basic Operations

• Inserting an element into a tree
• Deleting an element from a tree
• Searching for an element
• Traversing the tree

• Auxiliary Operations
• Finding the size of the tree, node
• Finding the height of a tree, node
• Finding the level which has maximum sum
• Finding the least common ancestor (LCA) for a given pair of nodes, and many

more.

38

Algorithmic and advanced Programming in Python

Applications of Binary Trees
• Following are the some of the applications where 𝑏𝑏𝑖𝑖𝑛𝑛𝑎𝑎𝑟𝑟𝑦𝑦 𝑡𝑡𝑟𝑟𝑒𝑒𝑒𝑒𝑠𝑠 play

an important role:
• Expression trees are used in compilers.
• XML, json, etc.. Parsing
• Huffman coding trees that are used in data compression algorithms.
• Binary Search Tree (BST), which supports search, insertion and deletion on a

collection of items in O(𝑙𝑙𝑜𝑜𝑔𝑔𝑛𝑛) (average).
• Priority Queue (PQ), which supports search and deletion of minimum (or

maximum) on a collection of items in logarithmic time (in worst case).

• In machine learning, GBDT

39

Algorithmic and advanced Programming in Python

Binary Tree Traversals
• In order to process trees, we need a mechanism for traversing them,

and that forms the subject of this section. The process of visiting all
nodes of a tree is called 𝑡𝑡𝑟𝑟𝑒𝑒𝑒𝑒 𝑡𝑡𝑟𝑟𝑎𝑎𝑣𝑣𝑒𝑒𝑟𝑟𝑠𝑠𝑎𝑎𝑙𝑙.

• Each node is processed only once but it may be visited more than
once.

• As we have already seen in linear data structures (like linked lists,
stacks, queues, etc.), the elements are visited in sequential order.

• But, in tree structures there are many different ways.
• Question: can you imagine some traversal possibilities?

40

Algorithmic and advanced Programming in Python

Binary Tree Traversals
• Tree traversal is like searching the tree, except that in traversal the

goal is to move through the tree in a particular order.
• In addition, all nodes are processed in the 𝑡𝑡𝑟𝑟𝑎𝑎𝑣𝑣𝑒𝑒𝑟𝑟𝑠𝑠𝑎𝑎𝑙𝑙 𝑏𝑏𝑢𝑢𝑡𝑡 𝑠𝑠𝑒𝑒𝑎𝑎𝑟𝑟𝑐𝑐ℎ𝑖𝑖𝑛𝑛𝑔𝑔

stops when the required node is found.

41

Algorithmic and advanced Programming in Python

Traversal Possibilities
• Starting at the root of a binary tree, there are three main steps that can

be performed and the order in which they are performed defines the
traversal type. These steps are: performing an action on the current
node (referred to as "visiting" the node and denoted with “𝐷𝐷”),
traversing to the left child node (denoted with “𝐿𝐿”), and traversing to
the right child node (denoted with “𝑅𝑅”). This process can be easily
described through recursion. Based on the above definition there are 6
possibilities:

42

Algorithmic and advanced Programming in Python

Traversal Possibilities
1. 𝐿𝐿𝐷𝐷𝑅𝑅: Process left subtree, process the current node data and then

process right subtree
2. 𝐿𝐿𝑅𝑅𝐷𝐷: Process left subtree, process right subtree and then process the

current node data
3. 𝐷𝐷𝐿𝐿𝑅𝑅: Process the current node data, process left subtree and then

process right subtree
4. 𝐷𝐷𝑅𝑅𝐿𝐿: Process the current node data, process right subtree and then

process left subtree
5. 𝑅𝑅𝐷𝐷𝐿𝐿: Process right subtree, process the current node data and then

process left subtree
6. 𝑅𝑅𝐿𝐿𝐷𝐷: Process right subtree, process left subtree and then process the

current node data

43

Algorithmic and advanced Programming in Python

Classifying the Traversals
• The sequence in which these entities (nodes) are processed defines a

particular traversal method. The classification is based on the order in
which current node is processed. That means, if we are classifying
based on current node (𝐷𝐷) and if 𝐷𝐷 comes in the middle then it does
not matter whether 𝐿𝐿 is on left side of 𝐷𝐷 or 𝑅𝑅 is on left side of 𝐷𝐷.

• Similarly, it does not matter whether 𝐿𝐿 is on right side of 𝐷𝐷 or 𝑅𝑅 is on
right side of 𝐷𝐷. Due to this, the total 6 possibilities are reduced to 3
and these are:

• PreOrder (𝐷𝐷𝐿𝐿𝑅𝑅) Traversal
• InOrder (𝐿𝐿𝐷𝐷𝑅𝑅) Traversal
• PostOrder (𝐿𝐿𝑅𝑅𝐷𝐷) Traversal

44

Algorithmic and advanced Programming in Python

Classifying the Traversals
• There is another traversal method which does not depend on the

above orders and it is:
• Level Order Traversal: This method is inspired from Breadth First Traversal

(BFS of Graph algorithms).
• Let us use the diagram below for the remaining discussion.

45

Algorithmic and advanced Programming in Python

PreOrder Traversal
• In preorder traversal, each node is processed before (pre) either of its

subtrees. This is the simplest traversal to understand. However, even
though each node is processed before the subtrees, it still requires that
some information must be maintained while moving down the tree. In
the example above, 1 is processed first, then the left subtree, and this is
followed by the right subtree.

• Therefore, processing must return to the right subtree after finishing
the processing of the left subtree. To move to the right subtree after
processing the left subtree, we must maintain the root information.

• Question: what is the obvious ADT for such an information?

46

Algorithmic and advanced Programming in Python

PreOrder Traversal
• The obvious ADT for such information is a stack. Because of its LIFO

structure, it is possible to get the information about the right subtrees
back in the reverse order. Preorder traversal is defined as follows:

• Visit the root.
• Traverse the left subtree in Preorder.
• Traverse the right subtree in Preorder.

• The nodes of tree would be visited in the order: 1 2 4 5 3 6 7

47

Algorithmic and advanced Programming in Python

PreOrder Traversal

48

• Question: What is the time and space complexity?

Algorithmic and advanced Programming in Python

PreOrder Traversal

49

• Question: What is the time and space complexity?
• Time complexity O(n) and space complexity O(n)

Algorithmic and advanced Programming in Python

Non-Recursive PreOrder Traversal
• In the recursive version, a stack is required as we need to remember

the current node so that after completing the left subtree we can go to
the right subtree. To simulate the same, first we process the current
node and before going to the left subtree, we store the current node on
stack. After completing the left subtree processing, 𝑝𝑝𝑜𝑜𝑝𝑝 the element
and go to its right subtree. Continue this process until stack is
nonempty.

50

Algorithmic and advanced Programming in Python

Non-Recursive PreOrder Traversal

51

Algorithmic and advanced Programming in Python

In order traversal
• In Inorder Traversal the root is visited between the subtrees. Inorder

traversal is defined as follows:
• Traverse the left subtree in Inorder.
• Visit the root.
• Traverse the right subtree in Inorder.

• The nodes of tree would be visited in the order: 4 2 5 1 6 3 7

52

Algorithmic and advanced Programming in Python

• Question: What is the time and space complexity?

Code

53

Algorithmic and advanced Programming in Python

• Question: What is the time and space complexity?
• Time complexity O(n) and space complexity O(n)

Code

54

Algorithmic and advanced Programming in Python

Non-Recursive Inorder Traversal
• The Non-recursive version of Inorder traversal is similar to Preorder.

The only change is, instead of processing the node before going to left
subtree, process it after popping (which is indicated after completion
of left subtree processing).

55

Algorithmic and advanced Programming in Python

PostOrder Traversal
• In post order traversal, the root is visited after both subtrees. PostOrder

traversal is defined as follows:
• Traverse the left subtree in PostOrder.
• Traverse the right subtree in PostOrder.
• Visit the root.

• The nodes of the tree would be visited in the order: 4 5 2 6 7 3 1

56

Algorithmic and advanced Programming in Python

Code recursive

57

Algorithmic and advanced Programming in Python

Code iterative

58

Algorithmic and advanced Programming in Python

Analysis
• In preorder and inorder traversals, after popping the stack element we

do not need to visit the same vertex again. But in post order traversal,
each node is visited twice. That means, after processing the left subtree
we will visit the current node and after processing the right subtree we
will visit the same current node. But we should be processing the node
during the second visit. Here the problem is how to differentiate
whether we are returning from the left subtree or the right subtree.

59

Algorithmic and advanced Programming in Python

Analysis
• We use a 𝑝𝑝𝑟𝑟𝑒𝑒𝑣𝑣𝑖𝑖𝑜𝑜𝑢𝑢𝑠𝑠 variable to keep track of the earlier traversed node.

Let’s assume 𝑐𝑐𝑢𝑢𝑟𝑟𝑟𝑟𝑒𝑒𝑛𝑛𝑡𝑡 is the current node that is on top of the stack. When
𝑝𝑝𝑟𝑟𝑒𝑒𝑣𝑣𝑖𝑖𝑜𝑜𝑢𝑢𝑠𝑠 is 𝑐𝑐𝑢𝑢𝑟𝑟𝑟𝑟𝑒𝑒𝑛𝑛𝑡𝑡′𝑠𝑠 parent, we are traversing down the tree. In this case,
we try to traverse to 𝑐𝑐𝑢𝑢𝑟𝑟𝑟𝑟𝑒𝑒𝑛𝑛𝑡𝑡′𝑠𝑠 left child if available (i.e., push left child to
the stack). If it is not available, we look at 𝑐𝑐𝑢𝑢𝑟𝑟𝑟𝑟𝑒𝑒𝑛𝑛𝑡𝑡′𝑠𝑠 right child. If both left
and right child do not exist (ie, 𝑐𝑐𝑢𝑢𝑟𝑟𝑟𝑟𝑒𝑒𝑛𝑛𝑡𝑡 is a leaf node), we print 𝑐𝑐𝑢𝑢𝑟𝑟𝑟𝑟𝑒𝑒𝑛𝑛𝑡𝑡′𝑠𝑠
value and pop it off the stack.

• If prev is 𝑐𝑐𝑢𝑢𝑟𝑟𝑟𝑟𝑒𝑒𝑛𝑛𝑡𝑡′𝑠𝑠 left child, we are traversing up the tree from the left.
We look at 𝑐𝑐𝑢𝑢𝑟𝑟𝑟𝑟𝑒𝑒𝑛𝑛𝑡𝑡′𝑠𝑠 right child. If it is available, then traverse down the
right child (i.e., push right child to the stack); otherwise print 𝑐𝑐𝑢𝑢𝑟𝑟𝑟𝑟𝑒𝑒𝑛𝑛𝑡𝑡′𝑠𝑠
value and pop it off the stack. If 𝑝𝑝𝑟𝑟𝑒𝑒𝑣𝑣𝑖𝑖𝑜𝑜𝑢𝑢𝑠𝑠 is 𝑐𝑐𝑢𝑢𝑟𝑟𝑟𝑟𝑒𝑒𝑛𝑛𝑡𝑡′𝑠𝑠 right child, we are
traversing up the tree from the right. In this case, we print 𝑐𝑐𝑢𝑢𝑟𝑟𝑟𝑟𝑒𝑒𝑛𝑛𝑡𝑡′𝑠𝑠 value
and pop it off the stack.

60

Algorithmic and advanced Programming in Python

Level Order Traversal
• Level order traversal is defined as follows:

• Visit the root.
• While traversing level 𝑙𝑙, keep all the elements at level 𝑙𝑙 + 1 in queue.
• Go to the next level and visit all the nodes at that level.
• Repeat this until all levels are completed.

• The nodes of the tree are visited in the order: [1] [2 3] [4 5 6 7]

• Time Complexity: O(𝑛𝑛). Space Complexity: O(𝑛𝑛). In the worst case,
all the nodes on the entire last level could be in the queue.

61

Algorithmic and advanced Programming in Python

In Lab session
• You will play with the concepts and starts getting more and more

familiar with trees
• This can be useful for your project

• Lab is done by Sofia Vasquez

62

	Slide Number 1
	Outline
	Reminder of the objective of this course
	Reminder of previous session
	What is a Tree?
	Is the order important?
	Glossary
	Glossary
	Glossary
	Glossary
	Glossary
	Glossary
	Glossary
	Glossary
	Glossary
	Glossary
	Glossary
	Glossary
	Glossary
	Glossary
	Glossary
	Glossary
	Glossary
	Glossary
	Binary trees
	Generic binary trees
	Type of Binary trees
	Full Binary Tree
	Complete binary tree
	Please complete?
	Please complete?
	Properties of binary trees
	Properties
	Properties
	Properties
	Structure of Binary Trees
	Structure
	Operations on Binary Trees
	Applications of Binary Trees
	Binary Tree Traversals
	Binary Tree Traversals
	 Traversal Possibilities
	 Traversal Possibilities
	 Classifying the Traversals
	 Classifying the Traversals
	 PreOrder Traversal
	 PreOrder Traversal
	 PreOrder Traversal
	 PreOrder Traversal
	Non-Recursive PreOrder Traversal
	Non-Recursive PreOrder Traversal
	In order traversal
	Code
	Code
	 Non-Recursive Inorder Traversal
	 PostOrder Traversal
	Code recursive
	Code iterative
	Analysis
	Analysis
	Level Order Traversal
	In Lab session	

